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Outline

Introduction (the broader context of problems related to MLG)
Continous description of MLG

Dual discrete formulation

The observables: Amplitudes (sphere and one loop)

Supersymmetric extension.

We analyze the Ramond sector.

The new progress:

1) We clarified the structure of the physical fields.

2) We showed that higher equations of motion imply a certain relation between tachyonic
fields and elements of the ground ring. This relation allows to compute integrals over
moduli space that define gravitational amplitudes.

Why 2D gravity?

1)

2)

It is simple enough, so it can serves as a laboratory for quantum gravity — exact
computations are possible.

It is rich enough to connect many different subjects as string theory, matrix models,
topological field theory, integrable hierarchies, etc.



Introduction
The Landscape. MLG is not the unique theory of gravity in low dimension (2D), there are other
models of gravity in low dimensions which should be mentioned:
® Minimal Liouville Gravity. Its action consists of three parts:
SMLG = SLiouville + Smatter + Sghostsv where the Liouville term is

1
Stiowille = 7— / Px/g (VoL)? + QR + dmpue?bt)

® JT gravity (Dilaton ¢ 7 couples to curvature and gives dynamics to the boundary,
described by Schwarzian action of the boundary reparametrizations f(t))

Sr=1 /d2X Ve ¢T(R+2)

Here ¢,7 is the dilaton field. It enforces constant negative curvature, R = —2, and gives rise to
Schwarzian boundary dynamics. The metric itself has no local degrees of freedom, but the dilaton
introduces boundary dynamics that turn out to be extremely rich. The metric near the boundary
is fixed up to a reparametrization (a map from the boundary circle to itself). The dilaton controls
the proper length of this boundary and makes those reparametrizations dynamical. After
integrating out the bulk, what remains is an effective action for the boundary reparametrization
f(t). Note that ¢, is conceptually different from ¢ :

1) ¢.: the Liouville conformal factor, a dynamical scalar.

2) ¢yT: a dilaton/Lagrange multiplier enforcing geometry.



® Teleparallel Gravity in low D
R <+ T (Weitzenbdck connection which has zero curvature but nonzero torsion)

Instead of using the Ricci scalar R built from the Levi—Civita connection, the basic object is
the torsion tensor, which is given in terms of Christoffel symbols T’L,, = FPWL - FPHV, and
the action can be written schematically as

Stp = /d2xe T,

where T is a scalar constructed from torsion, T = T/, T} + ... and e = det(e3) plays
the same role as /g in ordinary GR action: invariant volume element from the vielbein. In
2D GR, the action reduces to a topological invariant, so no local dynamics. In 2D
teleparallel gravity, the torsion scalar T may also reduce to boundary terms, but depending
on the formulation, it can lead to different topological invariants! Parallel transport around
a defect produces not a rotation (as in curvature) but a shift (torsion). Such torsion
dislocations can be localized along lines or points, and one can imagine amplitudes in TP
gravity as integrals over configurations of such defects. From this point of view, TP gravity
is also topologically trivial in the bulk, but line-like structures (torsion defects, domain
walls) carry the physical content.

® Matrix model dual (Triangulations, double scaling limit)

Z:/dMefNTrV(M)



2D /3D Gravity Approaches

Feature | MLG JT Teleparallel Gravity
Action Liouville action 4+ mini- | S;1 = | Stp = fdzxe T with
mal CFT matter 3 [dPx/Bd(R+2) torsion scalar T
Geometry| Liouville mode ¢ (con- | Dilaton ¢ (enforces R = | Torsion T’fw = l_pw,, —
control formal factor) -2) .. replaces curvature
Matter Minimal CFT (finite pri- | No dynamical matter, | Can couple to matter;
sector maries) only dilaton gravity sector topologi-
cal in 2D/3D
Degrees | Coupled matter + Liou- | No local DOF (topolog- | Nolocal DOF in 2D/3D;
of ville fluctuations ical) only global/topological
freedom data
Topology| Amplitudes on sphere, | AdS, geometry, bound- | Topological invariants
focus torus, higher genus ary dynamics, Weil- | (torsion, non-metricity)
Petersson volumes Euler class
Matrix Dual to minimal matrix | Related via double- | No direct dual; con-
model models scaled random matrix | nections via topological
relation ensembles field theory
Physical | Noncritical string the- | Near-extremal BHs, | Alternative GR  for-
motiva- | ory, solvable 2D gravity AdS2/SYK duality mulation; explores
tion torsion/non-metricity in

QG




Comparison Summary

Even though these three version of 2D gravity look quite different, they all share the basic feature
that the metric in two dimensions has no propagating degrees of freedom. Instead, what we are
really studying are scalar fields that control the geometry — the Liouville mode, the dilaton, or
the torsion scalar — and how they encode the quantum or topological aspects of 2D gravity.

Key Questions:
® Topological invariants in 2D gravity. JT vs teleparallel gravity vs Liouville: study the
connections.

® Matrix dual discription vs continuum.
® Amplitudes on higher topologies?

® Supersymmetric extensions.

Roadmap of the talk: We can add to the table above another two “directions” g and Asym. We
are working with the first column. Our present objective is to study genus dependence and chiral
algebra dependence.

{{Va,(z1) - Vay(zn))g,aymt = MLG(g, Asym) amplitudes (generating function)

1. Continuous vs. discrete approaches to MLG.
2. Gravitational amplitudes (sphere and torus) via higher equations of motion.

3. Supersymmetric case: Ramond sector, tachyons, physical fields, and the ground ring.



Main points about CFT

Conserved holomorphic tensor T(z) leads to Virasoro algebra

c
[Lm, Ln] = (m = n)Lmin + — 3

2

—m)dm,—n mnéeZ

CFT space of local fields ®{a}[Va], where [Va] is highest weight Vir rep-n:
Lo|AY = A|A), Lp>o|A) =0

In particular primary fields Va(z, Z) according to field-state correspondence are related to
the highest weight vectors |A)
OPE leads to decomposition of correlation function by means of conformal blocks F(z).

A A 2
Va(2)Vaya) = 3 Ry |Fan @)
OPE channels: Ay

Degenerate conformal fields are relevant for conformal Bootstrap. They constitute spectra
of minimal Wy models, and, in particular, the Virasoro Vir = YV, minimal models

Conformal Bootstrap = degenerate fields + Associativity of operator algebra

Associativity condition for 4-point function = Crossing symmetry.



Virasoro representation theory and conformal blocks

® General Virasoro Verma module: primary fields and descendent fields
Li,;‘A> = L_le_kz...‘A>, where k1 > kp > --- > 0.

level N = |K| = ki + ko + ...
® Using ¢ = 1+ 6(b+ 1/b)?, degenerate representations are labeled by positive integers r, s:

(b+1/b)? b s
Ar,s:T*/\gsy )\rs:E+%
® There exists singular vector |xrs) = Z\E\:rs apL_p|Ass) in the module [Afs]
on the level r X s.

Decoupling condition: setting |xr,s) = 0 provides an ODE of order rs for any correlation
function containing the degenerate field.



Rational and irrational CFTs

Besides the classification by Asym type, there is another principle by which CFT models are
divided into two classes:

® Rational — with discrete OPE form (MMg,, models)

® |rrational — with continuous OPE form.
Main example: Liouville theory (or super Liouville)
Super Liouville plays an important role in string theory. The conformal anomaly effect = Liouville
theory necessarily arises in all non-critical string models.
Supersymmetric Liouville field theory (SLFT) is CFT (structure constatnts found from sovilng
Bootstrap by PZ) , which is described by the Lagrangian

1 1, = - -
Lstpr = o (020)° + 5 (V00 + $OU) + 2ipb?Pipet® + 2mb? e

the coupling constant b is related to the central charge € = 1+ 2(b + 1/b)? of the SVIR algebra.
Primary fields are exponentials e?? (with superpartners).



Torus Virasoro conformal blocks

The partition function for a conformal field theory defined on a torus with modular parameter 7 is
Z="Tr (qLO_ﬁE/zo_ﬁ) ,  where q=¢€>"" | and H=1Lo+ Lo

Example: 1-point block in the torus CFT; is defined as the holomorphic contribution to the
1-point correlation function of a given primary operator,

T A
(On,a(z,2)) = Tr (g1 </2qR0 /%0 A(2,2)) = 3 C5 Faa(z,9) Faa(2,)
A
(Holomorphic) 1-point conformal block (does not depend on z). Is is given by

- e ~
Fan(z,9) ="/ > " q"Fo(B, 4, ¢)
n=0

q is the elliptic parameter on a torus with the modulus 7, and the expansion coefficients are
o~ 1 ~ ~
Fa(B, B c)= ———— > BMN(A M|OAIN, A)
<A|0A|A> n=|M|=|N|
where |A, M) = Liiml....Lifmk |A) are descendant vectors in the Verma module generated from

the primary state |A). Here, M labels basis monomials, |M| = iym; + ... + ixmy denotes the sum
of the Virasoro generator indices. The matrix BMIN s the inverse of the Gram matrix
Bun = (A, M|N, A). Tadpole diagram:



Exactly solvable models of non-critical strings. MLG

Target space: MMy, ,. Non-critical string = in action has a contribution of Liouville theory (from
the integral over 2d metrics) = interpretation as a model of induced 2d gravity.
MLG structure:

® Action : Aig = Acrr + AL + Aghosts: Acrr is the matter sector (Minimal model), A is the
gravitational sector, Aghosts is the ghost sector (B, C_1).

® MLG - Q BRST theory, Q = § dz[TM(z) + TL(z) + 3 T&"(2)]c(2)
BRST inv condition = cq,p + ¢, = 26, then Q%2 =0

® Physical fields — QgrsT cohomology: QWp,n = 0, Wi, is not exact.
Explicit form of physical fields Wiy = Um,ncC, where Um,n = ®m nVim,—n and
A(Pm,n) + A(Vm,—n) = 1.

n .
Corr. numbers: [[]_, [ d?z;(W;(0) W,(1) Ws(00) Ui(z))

The calculation requires integrating over the moduli space of the product of the corr. functions in

math. and grav. sectors, use conformal block decomposition, Liouville contour problem, ...




Method for calculating the MLG corr. numbers

The method is based on the relationship between the physical fields of the MLG and the
logarithmic fields of the Liouville theory.

The log fields in the Liouville theory V, (z) = %Va(z)|a:amn where V, =: ¢29(?) .

HQEM: DppDmn V) = BmnVm,—n, where By is a numeral. coefficients,

Vin,—n is the dressing field of Liouville in Wi, and Dy is the operator, creating singlar vector.
Example: V{; = ¢ = 0d¢ = e? is the Liouville equation.

Using HQEM = The main relation: Wp,, = Bn_m1 QsQs O,/n,,

where O}, = Hun Hinn® min V) .. where Hp, is found explicitly.

Applying b_1b_1 and using L, = {bn, Q} =
Upn = B,880!,, mod @ — exact
Using it in the integral over the moduli space of 4pt numbers by Stokes’ theorem =- integral over

the boundary (the contour around singular points). The boundary contributions are calculated
analytically, using OPE of degenerate fields in O}, (O}, Wimn, = ).



Alternative approach to MLG and string equation

In the direct approach, the problem of calculating arbitrary n-point functions and generalizing to
higher genera remains open.

The alternative approach is based on the idea of double scaling limit which describes a statistical
system living on random lattices that fluctuate and are also an object of a statistical ensemble, at
a phase transition point and in a situation where large area surfaces contribute.

Such a description leads to a rigorous mathematical formulation of 2D gravity models (Douglas).
The generating function is constructed from some special solution of the string equation

[P, Q] =1, where P, Q are differential operators,
depending on the set of parameters {A\mn} and {u;}.

02z
Z()\) = <expz)\mn Wmn> a)\z ()‘)7
mn 11

where uf()) is a special solution of the string equation. As of yet (2,2p+ 1), i.e. g =1!

=u

iy



String equation and Frobenius manifolds

Using the connection with FM, it was possible to determine the required solution and construct a
closed expression for the generating function of the correlation numbers in MLG.

The choice of flat coordinates on the FM plays a key role.

The explicit representation is of the form

v, 8s o5 (atDm—an
<eXP%n:)\mnWmn> :/0 C‘E’Yma - res Z/\an q

where v - flat coordinates, o, 8,7 =1, ..., — 1, v* solution of the string equation 95/9va =0,
Cg’y <~ FAq3(C[}’]/%r Qly) =2 ugyd=k
{c8 v (N}
4
<Wm1"1 e W’"N”N)

Physical amplitudes

Explicit construction of correlation numbers

> Relationship of MLG <+ FM with FA4 algebra and metric
(ea,eg) = resy—co Ca Qfﬁ

> Explicit form of ij”, explicit form of the solution of the string
equation in the flat coordinates v (Amn).



Some properties of CFT correlators on a torus

T is the modular parameter of the torus and g = exp(2wit).
Conformal Ward identities on the torus:

(TR0 = [A (PG =)+ 2m) + (e = ) + 20000 + 207 2| (@a(x)

Here elliptic (-function and Weierstrass P-function behave as ((z) ~ 1/z and P(z) ~ 1/2? at
z =0 (in this sense they are doubly periodic analogues of the corresponding terms arising in the
conformal Ward identities on the sphere) and

m = (2r)?

24 = 1—gqn ’

One-point functions of primary fields fa(7) = (®a )+ are modular forms of weight A, which means
that under transformation 7 — 7 4 1 they are invariant and under 7 — —% they transform as

fa(=3) = (D26 (1)



Calculation of torus one-point numbers

The correlator (Wm nBB); is a modular form of weight (2,2). It follows that we get a
well-defined correlation number if we integrate this correlator over one-punctured torus moduli
space, which is a fundamental domain of the PSL(2,Z) action on upper half-plane.

((W1,n))g=1 = /d%—(BECfVL,,,cbl,,,)T
F

Ghost sector:

(B(z)C(w)B(2)C(W)) = In(a)*, n(q) =q"/>* ]2 -a")

Notice independence from the positions of the ghosts.
Minimal model one-point correlators:

- (M)m 2AM S CReET M AM 2
(P14) = Zc Ty laPAtm =12 CR VS VTON () [

Liouville sector:

dP _(1)Q/2+iP, —\— 2
/E a()p/é_HFl’ (qq) 1/24+P X |FL(AI.;’AI(_;)/2+,'P7q)I27

~



Reduction to boundary terms

One can commute the BRST operator with the remaining B-ghosts using {Q, B(z)} = T(z),
where T = T + Ty + Ty is the stress-energy tensor of the full theory, and discard Q-exact

terms.

(Whi))er = Byt [ o7 (B2)B(2) QQ (Op)- = Bi} [ 7 (T T(2)0p)

We find the following general formula

((W1k))e=1 = k(2p +1 — k)



Super symmetric extension
The symmetry algebra of SMLG is N = 1 superconformal algebra,

¢
(Lo, Lm] = (n — m)Lntm + g(”3 = n)dn,—m,
¢ 1
GGy =2Lrs+ = (2= =) 6 —s,
R R G
1
[Ln, G = (En - r) Gntr,
where

1
r,s €7+ 3 for the NS sector,

r,s €7 for the R sector.

The SMLG is a tensor product of superconformal matter, super Liouville and superghosts,
anticommuting fields (b2, c—1) and commuting (83/2,7-1/2), with ¢z = —10

Asic = Asm + AsL + Asc
each of which obeys the symmetry with the central charge parameters constrained by

M+ &L+ 8&c =0



BRST quantization. NS sector

BRST charge Q is given by
0= 5 § drio(2)
Jolz) = c(2) (THz) + T(2) + 3 T(2) ) +(2) ((64(2) + 6M(2) + 365(2))

NS Physical fields. L, = {Q, bn} = A®*(W) = 0. Indeed, LoV = QbyW, so bpW = 0, otherwise it
is Q-exact, but then it follows that LoW = 0. In NS sector, there exist two types of physical fields

Wa(z,2) = Ua(z, 2) - ¢(2)€(2) - 6(7(2))8(5(2)),
Here 6()) is defined using formal properties of the Dirac §-function, A(vy) = 1/2. Second type:
o ; 1- 1 I
Taz,2) = Gk + 56%,0) (G + 368 ) Uz, c@)eCa)
where
Ua(z’ 2) = q)afb(zv Z) Va(27 Z)'

The parameter a can take generic values. The general form of the n-point correlator

n
In(at,--- ,an) = H/d22i<é—1/2 G_1/2[Ua,.(z,-)§/'<\/al (21) Wa, (22) Way (23)>.
i=4



Physical fields in the R sector

Physical fields |W) satisfy the following requirements

QV) =0, |W)#Q[.], (1)
bo|W) = Lo|W) =0, and fo|V) = Go|W) =0, (G, =[Q,5:]) )

As well as in the NS sector we construct |W) from the primary fields in the Matter and Liouville
sector

UF)= > ul 105 n)IRS). ®3)
€,e/=*+1

Its dimension is
A(UF) =5/8. 4)

In order to fulfill the condition by|W) = 0, in the (bc) sector, the state |W) must contain a
vacuum |v)p according to

n c =Y >0,
{b|v>b 0, n>0 5)

cm|V)pe =0, m>1.

The state |v)p. corresponds to the field ¢(z) with conformal dimension A(c) = —1.



Ghost number balance rules
The conservation of the ghost current restricts the types of fields that can appear in
non-vanishing correlation functions of SMLG for NS sector (e.g. (WWW)):

Ne — Np =3, N(;(,\/) — N§(B) + Ng — Ny =2

OPE for the correlation function with N¢ and Np numbers of ¢ and b fields respectively, we insert
the operator Nfc = f dzJb¢, where JP¢ = — : bc :

X = deUbC(U) - c(z1)c(zne ) b(y1)--b(yw,)) = (Ne—Np)(...c(21)--.c(zn, ) b(y1)---b(yw, )
deforming the contour to infinity and using the transformation law of the ghost current

Jbe(u) = —J(/u)/u? +3/u, u—1/u, (6)
we find that the same integral becomes

X = dul{( 1))/ + 3/ )1/ 7)1/ 2 )DL/ 32)- (1 )]

= 3(..c(z1)--e(zn.)b(y1)--b(yw, ))-

which proves the first rule.
For the 87 system, we have the ghost current J87 = — : By := —3¢ which transforms as

BV () = —1P7(1/u) /v = 2/u, u—1/u.

Using the OPEs of J87 with 3, ~, 4(7y), one arrives at the second rule.



Ghost number balance rules. R sector

For the Ramond sector, it is convenient to work in the bosonized representation, where

o=e /2 A(c) = 3/8. From which we construct physical field R = Uoc. Indeed, for an
arbitrary exponential field of the form e/, its conformal dimension is given by —/(/ +2)/2. For
our purposes, we introduce also the field oo = e¢/2, which has conformal dimension —5/8. This
allows one to construct fields (satisfying zero total dimension condition) from o3, ¢, and suitable
descendants from the Liouville and matter sectors involving modes such as G_; and L_;. For any
exponential field, we have the OPE:

57 (1)) = éeltﬁ(o). (7)

From this OPE, it follows that the modified ghost balance rule for correlation functions in the
Ramond sector, which include insertions of o and o5, must take the form

Ny — Nog) + N — Noy + No /2 — Ngp /2 = 2.

Restricting this rule to the case where only the fields 6(v), o, and o2 appear in the 8~ sector of
the correlation function, we get (e.g. (RRW)- yes, and (RRW) -no, this leads to idea of
connection with the ground ring)

N5(7)+Ng/2—/\/52/2:2. (8)

In view of the structure of the R physical field, the presence of o, appears to be essential. For
instance, if Ns(,) =2 (#W = 2), one must include pairs of (o,07) in higher-point functions.



Ground ring operators
Similarly to bosonic case, the Ramond sector also contains “discrete states” [o] = 3/8,
[Umn] =5/8 = [Ymn] =5/8 — mn/2

Omn = AmnHmnYR 506, YE o= (O aRm 0+ 105 1R ) 9)

m,n"*m,n m,n

where [1)pc = b_1|v)pe and the operators Hpn are operators of dimension 757 — 1 built from

super-Virasoro generators. They are fixed by requirement that Op,,, is BRST-closed, and therefore

1
QHm YR o =2(1- ——=¢ctcl | DL YR .co. 10
: 2( (6 B o) Y m, (10)
For O1,2, we find
1 b2 b2 4p?
Hip==> Gy G — Gt 11
12= 3+ T @ Fra — T G At A 21+ 27) 0 (11)

Using Higher Equations of Motion and the fact that |Um,,) is an eigenstate of the product GOLGéV’

G(;_G(;V,D#I,nDan, ( ) - Bm "GO G m —n — ’.Bm’"ﬁlﬁl/’m #,*ﬂUﬁ,fm (12)
we derive the following representation for the physical fields
QQ@:n,n = Bm,an,fn- (13)

Acting on both sides of equation (13) with b_1b_; we obtain the following relation
BmnUR _,50 = (0 — Qb_1) (0 — Qb_1)0)}, , = 00, , + BRST exact terms (14)

which can be used to facilitate evaluation of moduli integrals in four-point correlation numbers.



NS three-point correlation number from ground ring

h(a1,a2,a3) = (Wi, —n(21)Way (22) Was (23))

11 N , (15)
= o @ 20RO ()W ()W (25
Thus, we want to compute
1 1 1 T oy ,
i=——-— ¢ dz— ¢ dz{jo(2)jo(2)01 3(21)Wa(22)Wa(z3)). (16)
Bi32mi J,  2miJz
Recall that
O13(x) = ®3(x) Vaz(x) — P13(x) Vi3(x)+
term contributing to W, in the OPE 01 3W,
—_——t
7W13(X) /\13(X)+ (17)

+ [b2 S B()Y(x) : +2b% : b(x)c(x) ;] ®13(x) Vaz(x)
= B2B(x) c(x) W13 (x) Vas(x) — b*B(x) c(x) P13(x) Ars(x),

where Aj3 = Gfl/2v13, Vi3 = Gﬁ/’l/2q>13 . In the OPE Q1 3W, the term proportional to W,
arises from the third term of the expansion above. Thus we have

@173(21)W3(22) = Cgﬂ(a - b)éé(a)WE(ZQ) + ..., (18)

where CS/’(a — b), éé(a) are special matter and Liouville structure constants given by



_ 2mipy (ab = b2)

= e )
nty oo (BQY (¥ (1= B)y (072 —1/2) \? 5 (ab+ b?)
&= (%) <v(b2—1)7(3b2/2—1/2)> 2(@b) (20)

Since V4(z) = e??(?), hence V. = 9,Va(z) = p(z)Va(z). Thus
01 5(2)Wa(22) = o(z1) (€ (2 — H)EK(2)Wa(22) ) - (21)
Inserting this OPE into (16) gives

_EMa-h)Esa) 1

I
3 By o

7{1 deo f d2 (o (2)i0(2)p(21)Wa(22)Wa(2:). (22)

The action of jg on W, gives no contribution since W, is physical. The non-zero contribution
comes from the OPE jg(z) ¢(z1). Thus, we have

Jal@)e(ar) = ((T() + ) plar) = o(2) £, (23)
Therefore
_ CM(a— b)CL(a) 1 1 .1 _/= o A
s — %% ?i S A re GO LOL L CURCIUNCE

(24)



Conclusions

We present a method for the calculation of one-point amplitudes in (2,2p + 1) minimal Liouville
gravity defined on a torus. The method is based on the higher equations of motion in the Liouville
CFT. We show that this approach allows to reduce the moduli integrals entering the definition of
the torus amplitudes to certain boundary contributions, which can be calculated explicitly.

We verify that the results agree with the calculations performed in the matrix models approach.

We consider the construction of physical fields in the Ramond sector of super minimal Liouville
gravity. We derive the ground ring operators and a general relation, that can be used for
analytical computations in SMLG. The result is verified on the level of the three-point amplitude.

Perspectives:
® To calculate the general one-loop correlators in MLG(p,q) using HEM approach
® To construct dual matrix model description for SMLG

® To extend the method based on (S)HEM to multi-point correlators in different topologies



