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Outline

• Introduction (the broader context of problems related to MLG)

• Continous description of MLG

• Dual discrete formulation

• The observables: Amplitudes (sphere and one loop)

• Supersymmetric extension.
We analyze the Ramond sector.
The new progress:
1) We clarified the structure of the physical fields.
2) We showed that higher equations of motion imply a certain relation between tachyonic
fields and elements of the ground ring. This relation allows to compute integrals over
moduli space that define gravitational amplitudes.

Why 2D gravity?

1) It is simple enough, so it can serves as a laboratory for quantum gravity — exact
computations are possible.

2) It is rich enough to connect many different subjects as string theory, matrix models,
topological field theory, integrable hierarchies, etc.



Introduction
The Landscape. MLG is not the unique theory of gravity in low dimension (2D), there are other
models of gravity in low dimensions which should be mentioned:

• Minimal Liouville Gravity. Its action consists of three parts:
SMLG = SLiouville + Smatter + Sghosts, where the Liouville term is

SLiouville =
1

4π

∫
d2x
√

g
(
(∇φL)2 + QRφL + 4πµe2bφL

)
• JT gravity (Dilaton φJT couples to curvature and gives dynamics to the boundary,

described by Schwarzian action of the boundary reparametrizations f (t))

SJT = 1
2

∫
d2x
√

g φJT(R + 2)

Here φJT is the dilaton field. It enforces constant negative curvature, R = −2, and gives rise to
Schwarzian boundary dynamics. The metric itself has no local degrees of freedom, but the dilaton
introduces boundary dynamics that turn out to be extremely rich. The metric near the boundary
is fixed up to a reparametrization (a map from the boundary circle to itself). The dilaton controls
the proper length of this boundary and makes those reparametrizations dynamical. After
integrating out the bulk, what remains is an effective action for the boundary reparametrization
f (t). Note that φJT is conceptually different from φL:

1) φL: the Liouville conformal factor, a dynamical scalar.

2) φJT: a dilaton/Lagrange multiplier enforcing geometry.



• Teleparallel Gravity in low D

R ↔ T (Weitzenböck connection which has zero curvature but nonzero torsion)

Instead of using the Ricci scalar R built from the Levi–Civita connection, the basic object is
the torsion tensor, which is given in terms of Christoffel symbols Tρ

µν = Γρνµ − Γρµν , and
the action can be written schematically as

STP =

∫
d2x e T ,

where T is a scalar constructed from torsion, T = 1
4

Tρ
µνTµν

ρ + ... and e = det(ea
µ) plays

the same role as
√

g in ordinary GR action: invariant volume element from the vielbein. In
2D GR, the action reduces to a topological invariant, so no local dynamics. In 2D
teleparallel gravity, the torsion scalar T may also reduce to boundary terms, but depending
on the formulation, it can lead to different topological invariants! Parallel transport around
a defect produces not a rotation (as in curvature) but a shift (torsion). Such torsion
dislocations can be localized along lines or points, and one can imagine amplitudes in TP
gravity as integrals over configurations of such defects. From this point of view, TP gravity
is also topologically trivial in the bulk, but line-like structures (torsion defects, domain
walls) carry the physical content.

• Matrix model dual (Triangulations, double scaling limit)

Z =

∫
dM e−N Tr V (M)



2D/3D Gravity Approaches

Feature MLG JT Teleparallel Gravity

Action Liouville action + mini-
mal CFT matter

SJT =
1
2

∫
d2x
√

g φ(R + 2)
STP =

∫
d2x e T with

torsion scalar T
Geometry
control

Liouville mode φ (con-
formal factor)

Dilaton φ (enforces R =
−2)

Torsion Tρ
µν = Γρνµ −

Γρµν replaces curvature
R

Matter
sector

Minimal CFT (finite pri-
maries)

No dynamical matter,
only dilaton

Can couple to matter;
gravity sector topologi-
cal in 2D/3D

Degrees
of
freedom

Coupled matter + Liou-
ville fluctuations

No local DOF (topolog-
ical)

No local DOF in 2D/3D;
only global/topological
data

Topology
focus

Amplitudes on sphere,
torus, higher genus

AdS2 geometry, bound-
ary dynamics, Weil-
Petersson volumes

Topological invariants
(torsion, non-metricity)
6= Euler class

Matrix
model
relation

Dual to minimal matrix
models

Related via double-
scaled random matrix
ensembles

No direct dual; con-
nections via topological
field theory

Physical
motiva-
tion

Noncritical string the-
ory, solvable 2D gravity

Near-extremal BHs,
AdS2/SYK duality

Alternative GR for-
mulation; explores
torsion/non-metricity in
QG



Comparison Summary
Even though these three version of 2D gravity look quite different, they all share the basic feature
that the metric in two dimensions has no propagating degrees of freedom. Instead, what we are
really studying are scalar fields that control the geometry — the Liouville mode, the dilaton, or
the torsion scalar — and how they encode the quantum or topological aspects of 2D gravity.

Key Questions:

• Topological invariants in 2D gravity. JT vs teleparallel gravity vs Liouville: study the
connections.

• Matrix dual discription vs continuum.

• Amplitudes on higher topologies?

• Supersymmetric extensions.

Roadmap of the talk: We can add to the table above another two “directions” g and Asym. We
are working with the first column. Our present objective is to study genus dependence and chiral
algebra dependence.

{〈V∆1
(z1) · · ·V∆N

(zN )〉g,Asym} ⇒ MLG(g ,Asym) amplitudes (generating function)

1. Continuous vs. discrete approaches to MLG.

2. Gravitational amplitudes (sphere and torus) via higher equations of motion.

3. Supersymmetric case: Ramond sector, tachyons, physical fields, and the ground ring.



Main points about CFT

• Conserved holomorphic tensor T (z) leads to Virasoro algebra

[Lm, Ln] = (m − n)Lm+n +
c

12
(m3 −m)δm,−n m, n ∈ Z

• CFT space of local fields ⊕{∆}[V∆], where [V∆] is highest weight Vir rep-n:

L0|∆〉 = ∆|∆〉 , Ln>0|∆〉 = 0

In particular primary fields V∆(z, z̄) according to field-state correspondence are related to
the highest weight vectors |∆〉

• OPE leads to decomposition of correlation function by means of conformal blocks F (z).

〈V∆1
(z1) · · ·V∆N

(zN )〉 =
∑

OPE channels: ∆̃k

C
{∆̃k}
{∆i}

∣∣∣F{∆̃k}
{∆i} (z)

∣∣∣2
• Degenerate conformal fields are relevant for conformal Bootstrap. They constitute spectra

of minimal WN models, and, in particular, the Virasoro Vir =W2 minimal models

Conformal Bootstrap = degenerate fields + Associativity of operator algebra

Associativity condition for 4-point function ⇒ Crossing symmetry.



Virasoro representation theory and conformal blocks

• General Virasoro Verma module: primary fields and descendent fields
L−~k |∆〉 = L−k1

L−k2
...|∆〉, where k1 ≥ k2 ≥ · · · > 0.

level N = |~k| = k1 + k2 + . . .

0

1

2

3

|∆〉|∆〉

L−1|∆〉

L−2|∆〉 L2
−1|∆〉

L3
−1|∆〉L−1L−2|∆〉L−3|∆〉

• Using c = 1 + 6(b + 1/b)2, degenerate representations are labeled by positive integers r , s:

∆r,s =
(b + 1/b)2

4
− λ2

rs , λrs =
rb

2
+

s

2b

• There exists singular vector |χrs〉 =
∑
|~k|=rs

a~k L−~k |∆rs〉 in the module [∆rs ]

on the level r × s.
Decoupling condition: setting |χr,s〉 = 0 provides an ODE of order rs for any correlation
function containing the degenerate field.



Rational and irrational CFTs

Besides the classification by Asym type, there is another principle by which CFT models are
divided into two classes:

• Rational – with discrete OPE form (MMq,p models)

• Irrational – with continuous OPE form.
Main example: Liouville theory (or super Liouville)

Super Liouville plays an important role in string theory. The conformal anomaly effect ⇒ Liouville
theory necessarily arises in all non-critical string models.
Supersymmetric Liouville field theory (SLFT) is CFT (structure constatnts found from sovilng
Bootstrap by PZ) , which is described by the Lagrangian

LSLFT =
1

8π
(∂aφ)2 +

1

2π

(
ψ∂̄ψ + ψ̄∂ψ̄

)
+ 2iµb2ψ̄ψebφ + 2πb2µ2e2bφ ,

the coupling constant b is related to the central charge ĉ = 1 + 2(b + 1/b)2 of the SVIR algebra.
Primary fields are exponentials eaφ (with superpartners).



Torus Virasoro conformal blocks

The partition function for a conformal field theory defined on a torus with modular parameter τ is

Z = Tr
(

qL0− c
24 q̄L̄0− c

24

)
, where q = e2πiτ , and H = L0 + L̄0

Example: 1-point block in the torus CFT2 is defined as the holomorphic contribution to the
1-point correlation function of a given primary operator,

〈O∆,∆(z, z̄)〉 = Tr
(

qL0−c/24q̄L̄0−c/24O∆,∆(z, z̄)
)

=
∑

∆̃

C
∆

∆̃
F∆̃,∆ (z, q)F∆̃,∆ (z̄, q̄)

(Holomorphic) 1-point conformal block (does not depend on z). Is is given by

F∆̃,∆ (z, q) = q∆̃−c/24
∞∑

n=0

qnFn(∆, ∆̃, c)

q is the elliptic parameter on a torus with the modulus τ , and the expansion coefficients are

Fn(∆, ∆̃, c) =
1

〈∆̃|O∆|∆̃〉

∑
n=|M|=|N|

BM|N 〈∆̃,M|O∆|N, ∆̃〉

where |∆̃,M〉 = Li1
−m1

....L
ik
−mk
|∆̃〉 are descendant vectors in the Verma module generated from

the primary state |∆̃〉. Here, M labels basis monomials, |M| = i1m1 + . . .+ ik mk denotes the sum
of the Virasoro generator indices. The matrix BM|N is the inverse of the Gram matrix
BM|N = 〈∆̃,M|N, ∆̃〉. Tadpole diagram:
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Given a 4d N = 2 SUSY gauge theory, one can construct the Seiberg-Witten prepotentional, which involves

a sum over instantons. Integrals over instanton moduli spaces require regularisation. For UV-finite theories

the AGT conjecture favours particular, Nekrasov’s way of regularization. It implies that Nekrasov’s partition

function equals conformal blocks in 2d theories with WNc chiral algebra. For Nc = 2 and one adjoint multiplet

it coincides with a torus 1-point Virasoro conformal block. We check the AGT relation between conformal

dimension and adjoint multiplet’s mass in this case and investigate the limit of the conformal block, which

corresponds to the large mass limit of the 4d theory e.i. the asymptotically free 4d N = 2 supersymmetric

Yang-Mills theory. Though technically more involved, the limit is the same as in the case of fundamental

multiplets, and this provides one more non-trivial check of AGT conjecture.

PACS: 11.25.Hf, 11.15.-q

1. INTRODUCTION

N = 2 supersymmetric Yang-Mills (SYM) theories

have attracted attention for rather a long time, because

they are ideally suited for the study of interplay between

perturbative and non-perturbative effects and for man-

ifestation of various dualities [1]-[4]. Depending on the

fields content, these theories exhibit all types of renor-

malization behaviour of effective coupling constant g: it

may tend to infinity (Landau pôle), and to zero (asymp-

totic freedom with dimensional transmutation in IR) or

remain constant (UV-finite).

In N = 2 SYM theory the low-energy effective ac-

tion is Abelian and its most important part is expressed

in terms of the prepotential. Prepotential contains one-

loop perturbative contribution and a far more sophis-

ticated non-peturbative part, obtained as a sum over

instantons. It was explicitly found by N.Seiberg and

E.Witten (SW) [1, 2] with the help of duality arguments,

and the answer was soon reformulated in terms of the

spectral surfaces and simple integrable systems [5, 6].

The spectral curves were later interpreted in terms of

branes. Straightforward evaluation of instanton sums

is rather difficult, especially because some of the inte-

grals over instanton moduli spaces diverge. See [7] for

a comprehensive review and references.

A very successful direct caluculation was finally pro-

vided by N.Nekrasov [8]. He introduced a new partition

function, depending on additional parameters ϵ1 and ϵ2,

1)e-mail:alba@itp.ac.ru, e-mail:andrey.morozov@itep.ru

such that the limit ϵ1, ϵ2 −→ 0 reproduces SW prepo-

tential.

Recently F.Alday, D.Gaiotto and Y.Tachikawa

(AGT) made a ground-breaking conjecture that

Nekrasov functions coincide with conformal blocks [9]

of 2d Liouville/Toda models, and the ϵ-parameters

are needed to allow arbitrary values of the central

charge in their chiral WNc algebras (for Nc = 2 the

chiral algebra is just the ordinary Virasoro). AGT

suggest a non-trivial association of conformal blocks

with UV-finite 4d quiver models. The 4-point tree

Virasoro block is associated with the Nc = 2 gauge

theory with 2Nc = 4 additional fundamental matter

supermultiplets.

∆ext, 1

✫✪
✬✩

L−Y1 L−Y2∆
❅

❅
❅

"
"

"

∆ext, 1

L−Y1 , ∆1, ∞ L−Y2 , ∆2, 0

=⇒

Triple vertex with two Virasoro descendants and the 1-point
toric conformal block, obtained by taking a trace over Ver-
mat module with a given dimension ∆. Each line is chara-
terized by dimension, by Ferrers diagram and external legs
are also labeled by the position of the vertex operator on the
Riemann surface.

1



Exactly solvable models of non-critical strings. MLG

Target space: MMq,p . Non-critical string ⇒ in action has a contribution of Liouville theory (from
the integral over 2d metrics) ⇒ interpretation as a model of induced 2d gravity.
MLG structure:

• Action : ALG = ACFT + AL + Aghosts . ACFT is the matter sector (Minimal model), AL is the
gravitational sector, Aghosts is the ghost sector (B2,C−1).

• MLG - Q BRST theory, Q =
∮

dz[T M (z) + T L(z) + 1
2

T gh(z)]c(z)

BRST inv condition ⇒ cq,p + cL = 26, then Q2 = 0

• Physical fields – QBRST cohomology: QWmn = 0, Wmn is not exact.
Explicit form of physical fields Wmn = Um,ncc̄, where Um,n = Φm,nVm,−n and
∆(Φm,n) + ∆(Vm,−n) = 1.

Corr. numbers:
∏n

i=4

∫
d2zi〈W1(0)W2(1)W3(∞)Ui (zi )〉

The calculation requires integrating over the moduli space of the product of the corr. functions in
math. and grav. sectors, use conformal block decomposition, Liouville contour problem, ...



Method for calculating the MLG corr. numbers

The method is based on the relationship between the physical fields of the MLG and the
logarithmic fields of the Liouville theory.
The log fields in the Liouville theory V ′mn(z) = d

da
Va(z)|a=amn where Va =: eaφ(z) :

HQEM: DmnD̄mnV ′mn = BmnVm,−n, where Bmn is a numeral. coefficients,
Vm,−n is the dressing field of Liouville in Wmn and Dmn is the operator, creating singlar vector.
Example: V ′11 = φ ⇒ ∂∂̄φ = eφ is the Liouville equation.

Using HQEM ⇒ The main relation:Wmn = B−1
mn Q̄B QB O′mn

where O′mn = HmnH̄mnΦmnV ′mn, where Hmn is found explicitly.
Applying b−1b̄−1 and using Ln = {bn,Q} ⇒

Umn = B−1
mn ∂∂̄O′mn mod Q − exact

Using it in the integral over the moduli space of 4pt numbers by Stokes’ theorem ⇒ integral over
the boundary (the contour around singular points). The boundary contributions are calculated
analytically, using OPE of degenerate fields in O′mn (O′mnWmi ni = · · · ).



Alternative approach to MLG and string equation

In the direct approach, the problem of calculating arbitrary n-point functions and generalizing to
higher genera remains open.
The alternative approach is based on the idea of double scaling limit which describes a statistical
system living on random lattices that fluctuate and are also an object of a statistical ensemble, at
a phase transition point and in a situation where large area surfaces contribute.
Such a description leads to a rigorous mathematical formulation of 2D gravity models (Douglas).
The generating function is constructed from some special solution of the string equation
[P,Q] = 1, where P,Q are differential operators,
depending on the set of parameters {λmn} and {ui}.

Z(λ) = 〈exp
∑
mn

λmnWmn〉
∂2Z

∂λ2
11

= u∗1 (λ),

where u∗1 (λ) is a special solution of the string equation. As of yet (2, 2p + 1), i.e. q = 1!



String equation and Frobenius manifolds
Using the connection with FM, it was possible to determine the required solution and construct a
closed expression for the generating function of the correlation numbers in MLG.
The choice of flat coordinates on the FM plays a key role.

The explicit representation is of the form

〈exp
∑
mn

λmnWmn〉 =

∫ v∗(λ̃)

0
Cβγα

∂S

∂vβ
∂S

∂vγ
dvα, S = res

y=∞

∑
m,n

λ̃mnQ
(q+1)m−qn

q

where vα - flat coordinates, α, β, γ = 1, ..., q − 1, v∗ solution of the string equation ∂S/∂vα = 0,

Cβγα ⇐ FAq :C[y ]/ dQ
dy

, Q(y) =
∑

k uk yq−k

{Cβγα , v∗(λ)}
⇓

〈Wm1n1 · · ·WmN nN 〉
Physical amplitudes

Explicit construction of correlation numbers

. Relationship of MLG ↔ FM with FAq algebra and metric

(eα, eβ) = resy=∞
eα·eβ

Q′

. Explicit form of Cβγα , explicit form of the solution of the string
equation in the flat coordinates vα(λmn).



Some properties of CFT correlators on a torus

τ is the modular parameter of the torus and q ≡ exp(2πiτ).
Conformal Ward identities on the torus:

〈T (z)Φ∆(x)〉 =

[
∆ (P(z − x) + 2η1) + (ζ(z − x) + 2η1x)∂x + 2πi

∂

∂τ

]
〈Φ∆(x)〉

Here elliptic ζ-function and Weierstrass P-function behave as ζ(z) ∼ 1/z and P(z) ∼ 1/z2 at
z = 0 (in this sense they are doubly periodic analogues of the corresponding terms arising in the
conformal Ward identities on the sphere) and

η1 = (2π)2

[
1

24
+
∞∑

n=1

nqn

1− qn

]
.

One-point functions of primary fields f∆(τ) ≡ 〈Φ∆〉τ are modular forms of weight ∆, which means
that under transformation τ → τ + 1 they are invariant and under τ → − 1

τ
they transform as

f∆(−
1

τ
) = (ττ)∆f∆(τ)



Calculation of torus one-point numbers
The correlator 〈Wm,nBB〉τ is a modular form of weight (2, 2). It follows that we get a
well-defined correlation number if we integrate this correlator over one-punctured torus moduli
space, which is a fundamental domain of the PSL(2,Z) action on upper half-plane.

〈〈W1,n〉〉g=1 =

∫
F

d2τ 〈BBCCV1,−nΦ1,n〉τ

Ghost sector:

〈B(z)C(w)B(z)C(w)〉 = |η(q)|4, η(q) ≡ q1/24
∞∏

n=1

(1− qn) .

Notice independence from the positions of the ghosts.
Minimal model one-point correlators:

〈Φ1,k 〉 =

p∑
m=1

C
(M)m
m,(1,k)

|q|2∆M
1,m− 1

12
+

(b−1−b)2

2 |FM (∆M
1,k ,∆

M
1,m, q)|2 .

Liouville sector:

〈Va〉τ =

∫
γ

dP

4π
C

(L)Q/2+iP
a,Q/2+iP

(qq)−1/24+P2
× |FL(∆L

a ,∆
L
Q/2+iP , q)|2 ,



Reduction to boundary terms

One can commute the BRST operator with the remaining B-ghosts using {Q,B(z)} = T (z),
where T = TL + TM + Tgh is the stress-energy tensor of the full theory, and discard Q-exact
terms.

〈〈W1,k 〉〉g=1 = B−1
1,k

∫
d2τ 〈B(z)B(z)QQ

(
O′m,n

)
〉τ = B−1

1,k

∫
d2τ 〈T (z)T (z)O′m,n〉τ .

We find the following general formula

〈〈W1,k 〉〉g=1 = k(2p + 1− k)



Super symmetric extension
The symmetry algebra of SMLG is N = 1 superconformal algebra,

[Ln, Lm] = (n −m)Ln+m +
ĉ

8
(n3 − n)δn,−m,

{Gr ,Gs} = 2Lr+s +
ĉ

2

(
r2 −

1

4

)
δr,−s ,

[Ln,Gr ] =

(
1

2
n − r

)
Gn+r ,

where

r , s ∈ Z +
1

2
for the NS sector,

r , s ∈ Z for the R sector.

The SMLG is a tensor product of superconformal matter, super Liouville and superghosts,
anticommuting fields (b2, c−1) and commuting (β3/2, γ−1/2), with cgh = −10

ASLG = ASM + ASL + ASG

each of which obeys the symmetry with the central charge parameters constrained by

ĉSM + ĉSL + ĉSG = 0



BRST quantization. NS sector
BRST charge Q is given by

Q =
1

2πi

∮
dzjQ(z),

jQ(z) =: c(z)

(
T L(z) + T M (z) +

1

2
T g (z)

)
+ γ(z)

(
G L(z) + G M (z) +

1

2
G g (z)

)
NS Physical fields. Ln = {Q, bn} ⇒ ∆tot (Ψ) = 0. Indeed, L0Ψ = Qb0Ψ, so b0Ψ = 0, otherwise it
is Q-exact, but then it follows that L0Ψ = 0. In NS sector, there exist two types of physical fields

Wa(z, z̄) = Ua(z, z̄) · c(z)c̄(z̄) · δ(γ(z))δ(γ̄(z̄)),

Here δ(γ)) is defined using formal properties of the Dirac δ-function, ∆(γ) = 1/2. Second type:

W̃a(z, z̄) =

(
Ḡ M+L
−1/2

+
1

2
Ḡ g
−1/2

)(
G M+L
−1/2

+
1

2
G g
−1/2

)
Ua(z, z̄) · c̄(z̄)c(z),

where

Ua(z, z̄) = Φa−b(z, z̄)Va(z, z̄).

The parameter a can take generic values. The general form of the n-point correlator

In(a1, · · · , an) =
n∏

i=4

∫
d2zi

〈
Ḡ−1/2G−1/2Uai (zi )W̃a1 (z1)Wa2 (z2)Wa3 (z3)

〉
.



Physical fields in the R sector
Physical fields |Ψ〉 satisfy the following requirements

Q|Ψ〉 = 0, |Ψ〉 6= Q[...], (1)

b0|Ψ〉 = L0|Ψ〉 = 0, and β0|Ψ〉 = G0|Ψ〉 = 0, (Gn = [Q, βn]) (2)

As well as in the NS sector we construct |Ψ〉 from the primary fields in the Matter and Liouville
sector

|UR
a 〉 =

∑
ε,ε′=±1

uR
ε,ε′ |Θ

ε
a−b〉|R

ε′
a 〉. (3)

Its dimension is

∆(UR
a ) = 5/8. (4)

In order to fulfill the condition b0|Ψ〉 = 0, in the (bc) sector, the state |Ψ〉 must contain a
vacuum |v〉bc according to{

bn|v〉bc = 0, n ≥ 0,

cm|v〉bc = 0, m ≥ 1.
(5)

The state |v〉bc corresponds to the field c(z) with conformal dimension ∆(c) = −1.



Ghost number balance rules
The conservation of the ghost current restricts the types of fields that can appear in
non-vanishing correlation functions of SMLG for NS sector (e.g. 〈WWW̃〉):

Nc − Nb = 3, Nδ(γ) − Nδ(β) + Nβ − Nγ = 2.

OPE for the correlation function with Nc and Nb numbers of c and b fields respectively, we insert
the operator Ng

bc =
∮

dzJbc , where Jbc = − : bc :

X =

∮
du〈Jbc (u) . . . c(z1)...c(zNc )b(y1)...b(yNb

)〉 = (Nc−Nb)〈...c(z1)...c(zNc )b(y1)...b(yNb
)〉.

deforming the contour to infinity and using the transformation law of the ghost current

Jbc (u)→ −Jbc (1/u)/u2 + 3/u , u → 1/u, (6)

we find that the same integral becomes

X =

∮
∞

du[〈(−J(1/u)/u2 + 3/u)...c(1/z1)...c(1/zNc )b(1/y1)...b(1/yNb
)〉]

= 3〈...c(z1)...c(zNc )b(y1)...b(yNb
)〉.

which proves the first rule.
For the βγ system, we have the ghost current Jβγ = − : βγ := −∂φ which transforms as

Jβγ(u)→ −Jβγ(1/u)/u2 − 2/u , u → 1/u .

Using the OPEs of Jβγ with β, γ, δ(γ), one arrives at the second rule.



Ghost number balance rules. R sector
For the Ramond sector, it is convenient to work in the bosonized representation, where
σ = e−φ/2, ∆(σ) = 3/8. From which we construct physical field R = Uσc. Indeed, for an
arbitrary exponential field of the form e lφ, its conformal dimension is given by −l(l + 2)/2. For
our purposes, we introduce also the field σ2 = eφ/2, which has conformal dimension −5/8. This
allows one to construct fields (satisfying zero total dimension condition) from σ2, c, and suitable
descendants from the Liouville and matter sectors involving modes such as G−1 and L−1. For any
exponential field, we have the OPE:

Jβγ(u)e lφ(0) =
l

u
e lφ(0). (7)

From this OPE, it follows that the modified ghost balance rule for correlation functions in the
Ramond sector, which include insertions of σ and σ2, must take the form

Nδ(γ) − Nδ(β) + Nβ − Nγ + Nσ/2− Nσ2/2 = 2.

Restricting this rule to the case where only the fields δ(γ), σ, and σ2 appear in the βγ sector of

the correlation function, we get (e.g. 〈RRW〉- yes, and 〈RRW̃〉 -no, this leads to idea of
connection with the ground ring)

Nδ(γ) + Nσ/2− Nσ2/2 = 2. (8)

In view of the structure of the R physical field, the presence of σ2 appears to be essential. For
instance, if Nδ(γ) = 2 (#W = 2), one must include pairs of (σ, σ2) in higher-point functions.



Ground ring operators
Similarly to bosonic case, the Ramond sector also contains “discrete states” [σ] = 3/8,
[Umn] = 5/8⇒ [Ymn] = 5/8−mn/2

Om,n = H̄m,nHm,nYR
m,nσ̄σ|1〉bc , YR

m,n =
(
Θ−m,nR+

m,n + iΘ+
m,nR−m,n

)
, (9)

where |1〉bc = b−1|v〉bc and the operators Hmn are operators of dimension mn
2
− 1 built from

super-Virasoro generators. They are fixed by requirement that Om,n is BRST-closed, and therefore

QHm,nYR
m,nσ =

1

2

(
1−

1

(βM
m,n)2

G L
0 G M

0

)
DL

m,nYR
m,ncσ. (10)

For O1,2, we find

H1,2 =
1

2
+

b2

1− 2b2
G M

0 β−1c1 −
b2

1 + 2b2
G L

0 β−1c1 +
4b2

(1− 2b2)(1 + 2b2)
G L

0 G M
0 . (11)

Using Higher Equations of Motion and the fact that |Um,n〉 is an eigenstate of the product G L
0 G M

0

G L
0 G M

0 D̄L
m,nDL

m,n(YR
m,n)
′

= Bm,nG L
0 G M

0 UR
m,−n = iBm,nβ

M
m,nβ

L
m,−nUR

m,−n, (12)

we derive the following representation for the physical fields

Q̄QO′m,n = Bm,nRm,−n. (13)

Acting on both sides of equation (13) with b̄−1b−1 we obtain the following relation

Bm,nUR
m,−nσ̄σ =

(
∂̄ − Q̄ b̄−1

)
(∂ −Qb−1)O′m,n = ∂̄∂O′m,n + BRST exact terms (14)

which can be used to facilitate evaluation of moduli integrals in four-point correlation numbers.



NS three-point correlation number from ground ring

I3(a1, a2, a3) = 〈W̃m,−n(z1)Wa2 (z2)Wa3 (z3)〉

=
1

Bm,n

1

(2πi)2

∮
z1

d2z〈j̄Q(z̄)jQ(z)O′m,n(z1)Wa2 (z2)Wa3 (z3)〉.
(15)

Thus, we want to compute

I3 =
1

B1,3

1

2πi

∮
z1

dz
1

2πi

∮
z̄1

dz̄〈j̄Q(z̄)jQ(z)O′1,3(z1)Wa(z2)Wa(z3)〉. (16)

Recall that

O13(x) = Φ′13(x) V13(x)− Φ13(x) V ′13(x)+

term contributing to Wa in the OPE O1,3Wa︷ ︸︸ ︷
−Ψ13(x) Λ13(x)+

+
[
b2 : β(x)γ(x) : +2b2 : b(x)c(x) :

]
Φ13(x) V13(x)

− b2β(x) c(x) Ψ13(x) V13(x)− b2β(x) c(x) Φ13(x) Λ13(x),

(17)

where Λ13 = G L
−1/2

V13,Ψ13 = G M
−1/2

Φ13 . In the OPE O1,3Wa the term proportional to Wa

arises from the third term of the expansion above. Thus we have

O1,3(z1)Wa(z2) = C̃M
0 (a− b)C̃L

0(a)Wa(z2) + ... , (18)

where C̃M
0 (a− b), C̃L

0(a) are special matter and Liouville structure constants given by



C̃L
0 (a) =

2πiµγ
(
ab − b2

)
γ (−b2) γ(ab)

, (19)

C̃M
0 (a) = ib−2γ

(
bQ

2

)(
γ
(
1− b2

)
γ
(
b2/2− 1/2

)
γ (b2 − 1) γ (3b2/2− 1/2)

)1/2
γ
(
ab + b2

)
γ(ab)

. (20)

Since Va(z) = eaϕ(z), hence V ′a = ∂aVa(z) = ϕ(z)Va(z). Thus

O′1,3(z1)Wa(z2) = ϕ(z1)
(

C̃M
0 (a− b)C̃L

0(a)Wa(z2)
)
. (21)

Inserting this OPE into (16) gives

I3 =
C̃M

0 (a− b)C̃L
0(a)

B1,3

1

2πi

∮
z1

dz
1

2πi

∮
z̄1

dz̄〈j̄Q(z̄)jQ(z)ϕ(z1)Wa(z2)Wa(z3)〉. (22)

The action of jQ on Wa gives no contribution since Wa is physical. The non-zero contribution
comes from the OPE jQ(z)ϕ(z1). Thus, we have

jQ(z)ϕ(z1) = (c(z)T (z) + ...)ϕ(z1) = c(z)
ϕ′(z)

z − z1
. (23)

Therefore

I3 =
C̃M

0 (a− b)C̃L
0(a)

B1,3

1

2πi

∮
z1

dz
1

2πi

∮
z̄1

dz̄
1

|z − z1|2
〈c̄(z̄)c(z)∂z∂z̄ϕ(z)Wa(z2)Wa(z3)〉.

(24)



Conclusions

We present a method for the calculation of one-point amplitudes in (2, 2p + 1) minimal Liouville
gravity defined on a torus. The method is based on the higher equations of motion in the Liouville
CFT. We show that this approach allows to reduce the moduli integrals entering the definition of
the torus amplitudes to certain boundary contributions, which can be calculated explicitly.

We verify that the results agree with the calculations performed in the matrix models approach.

We consider the construction of physical fields in the Ramond sector of super minimal Liouville
gravity. We derive the ground ring operators and a general relation, that can be used for
analytical computations in SMLG. The result is verified on the level of the three-point amplitude.

Perspectives:

• To calculate the general one-loop correlators in MLG(p,q) using HEM approach

• To construct dual matrix model description for SMLG

• To extend the method based on (S)HEM to multi-point correlators in different topologies


