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No good understanding of dominant phenomena on cosmological scales where both dark matter and dark energy
are necessary to explain Baryon Acoustic Oscillations (BAO) or the Cosmic Microwave Background (CMB).

DARK MATTER is the dominant
form of matter in the Universe but
no one knows what it could be.
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SACDM = m /d433\/ _Q(R - 2A)

Cosmological constant

The cosmological constant can be replaced by dynamical fields with more fundamental origins:

DARK ENERGY



In cosmology in the last twenty five years, we have built the
standard model based on 95 % of unknown entities. This is
particularly severe for DARK ENERGY:

52
A= pp="75 +V(d)

going from a cosmological constant to a dark energy field
(DESI?).

This field is generically coupled to matter (otherwise fine-
tuning) and nearly massless (to generate the acceleration of
the expansion)




Dark matter could also be extremely light and made out of scalar field.
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Self interactions lead to solitons, vortices. All relevant for galactic physics.



The interactions with matter are captured by a single metric.

Sm(wu g,unz)

Matter interacts with the Jordan metric which is not the dynamical
one in the Einstein equation. The Bekenstein form of the Jordan
metric is:

Guw = A% (¢, X)guw + B*(h, X)0,0,, ¢

It preserves the diffeomorphism invariance and does not lead to
higher derivative Lagrangian (ghosts).
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If the scalar field is ver light, one of its main effects will depend on
its interactions with matter:

Sm(wu g,unz)

Matter interacts with the Jordan metric which is not the dynamical
one in the Einstein equation. The Bekenstein form of the Jordan
metric is:

Guw = A% (¢, X)guw + B*(h, X)0,0,, ¢

\

Conformal coupling Disformal coupling

Conformal case already hallowed ground , focus mainly on disformal below.
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To simplify the discussion, we will focus on a Yukawa interaction and a
constant disformal term:

V2

A(¢p) = 65¢/mP1’ B(¢) = —

This is motivated by the case of massive gravity where:

1
B = , A~ Mgraviton ,82 <107° Cassini bound
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We will test interactions with matter and self-interactions using gravitational effects
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For the interaction with
matter, we will consider the
case of hyperbolic orbits and
the possible scalar memory
effects.

For the self-interactions, tail
effects where non-local time
correlation occur are
particularly interesting.



The effective approach

uv IR

Integrating out short distance modes / \

A Two body system consisting of two nearly point-like particles is
viewed from afar as a blob with many non-vanishing multipoles.



The effective action for a two body system can be obtained symbolically (in the in-out picture) as:

etSett[Tal _ /thpcﬁei(SEHJrSdﬂrSm)

where the metric is expanded around Minkowski space and the gravitons and scalars are integrated out.
The effective action depends only on the positions and velocities of the bodies. This gives the conservative
dynamics of the system.

The effective action can be obtained by two methods:

A diagrammatic approach where vertices and propagators involve the interaction
between on scalars and gravitons with the external bodies in a non-relativistic
approximation. No external graviton or scalar legs are taken into account.

Y
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An algebraic approach where the equations of motion are solved and the
solutions used to calculate the action (Fokker)



The system is dissipative as energy is radiated away by gravitons and scalars: h“,, = f_LW + HW, o = qg + P

Giseff [ashpw,d] — / 'DHMVD(DGi(SEH—i_S‘?S—i_Sm) External fields radiated away
\ Integrating out short distances \ 53;3‘
Integrating out the radiated field leads to an imaginary part in the effective action: S

dissipation

eiSeff[:va] — /Dﬁuypqgeiseff[$aaﬁuV;$]

Contains both conservative and dissipative parts.




The long-distance action:

After integration over the internal NR scalars the effective
action for the radiated scalar is:

S = [ da(=5(06? + =-9)

mei

Expanding around the centre of mass this gives the effective
action at quadratic order:

Seff D /df(ihf_5 +1'0;0 + ;Iijaiajég)

Integrating out the scalar and taking the imaginary part gives
the emitted power.
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The effective interactions between the particles
and the scalars are replaced by a source temJ
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A tale of three propagators:

For internal lines the scalars are off-shell in the non-relativistic approximation:

1 1 k2
= —(14+ =2 +...
kkt — i€ k2( * k2 o)

In the effective action calculation, the Feynman propagator leads to an imaginary part:

1 1
= P(——) + ind(k"k
e LG g) T imO(RTE)

For the Fokker method and the in-in calculations, the retarded propagator:




This is the multipole expansion of the emitted power in monopole, dipole and quadrupole terms. The
conformal and disformal expressions for the source J can be worked out using the conformal and disformal
vertices. There are several contributions:

Jyo = =B(maé(¥ —Ta) +mpd(T — Tp))

Direct conformal coupling

oo = Blma AS(Z—4)+mp L o(i—ip))+ LONTAME (500 o s(i—ip))
2 2 T4 — Zp]

One graviton exchange
Expansion of proper time of one particle



The disformal interaction:

Gnmamp d2( 1
A2 dt2 |fA_33B

Jdis — 46

Only contributes to the monopole at
this order. Quadratic in the velocities.

This allows one to calculate the monopole, dipole and quadrupole at lowest order in
the velocities:

I = —B(ma(x'x’ — gmzcw + (A — B))

Leading to the quadrupole
emission (small).



The dipole is not modified by the disformal coupling and corresponds to the usual scalar-tensor result:

2
1
GN,wm,A i d”

I' = —B(mazy + mpzly) — 40 v —=(>)

Vanishes by the centre of mass
theorem (no motion of centre of
mass)

The monopole is where both the conformal and disformal interactions enter:

IUO = _6(mA + mB) Gives vanishing effects because

conservation of matter

2 + 32 Gt 1

M)

Ivz — 46GNmAmB(3|fA — fB|

Leads to new contributions to
the emitted power.



Hyperbolic encounters and memory effects

When two objects go past each other, in GR there is a linear memory effect

Related to the emitted power in gravitational waves at zero frequency

Variation of the rod length

4G ve2 —1 1
ML X (laly — (N Ny +1,Na) + S ((ND)? + 1N N,)
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Displacement

Emitted power spectrum



The scalar memory

The Jacobi deviation equation:
d2 gz
dt?

Far away the scalar field radiates:

_ Q- R)
- 47TmP1R

The effective charge is given in terms of the multipoles

. 1. .
Q:I‘FI@‘N% + EliszNJ

— _joggﬂ K

Monopole emission

Riemann tensor of Jordan metric




Surprinsingly, the disformal interaction disappears from the memory effect and power at zero frequency.... An
explanation is the longitudinal nature of the disformal metric compared to the transverse component of the
conformal interaction. In fact the result is related to the BMS formalism.

Where can you see the disformal effects? Scalar Kicks
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The centre of mass kick is proportional to the disformal effect

Qb GR, QQGNTTE
Y

U, X €AV, =31

The most favourable case for observation of this scalar kick would be white dwarfs when the closest approach is given by the
cut-off scale determined by:

101
i

A> eV

If one were unbelievably optimistic, the observation of scalar memory and kicks would distinguish between conformal and disformal
interactions...



The long distance action revisited

The conservative and dissipative effects can be captured easily in the in-in formalism of Schwinger-Keldysh:

e’iseff[a:a] — /thvpcbaei(SEH—l—S¢—|—Sm)1—’i(SEH+S¢—|—Sm)2 a = 1,2
T evolution
-0 l - E
)t = ) > oo Two copies of each field.
- T @ T

T evolution Keldyshcontour



The effective action can be decomposed into:

Se(z2) = [ dt(L(z}) — L(z2) + R(z:?))

87

Conservative dynamics Radiation-reaction interactions

Newton’s law becomes:

aﬁ(iﬁa,b) 1, OR . OR ) Dissipation taken into accountin a

Mg bLa,b = a-’ﬁa,b 5 3:101 (92?2 Lagrangian formalism

Radiation-reaction
potential



The corrected potential

/\/d‘lx ¢4 :/dt (g, xp) ¢50=4anpl(|xlxa|+|xlxb|)

This diverges and needs to be renormalized at the matching scale where the point-like approximation fails. This leads to a classical running of
the coupling constant B.

)\,84G%V 67T3m2m§

4 + In(r2 A2
Vi (zg, p) = o ( ra + dmgmp(m?2 + mi) ( )

r
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Effects on perihelion of Mercury, Shapiro time delay etc...
Physical log correction

A8 S (GyME) ™!
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The long-distance effective action

The effective action is obtained in two steps as before. First integrate the short distance modes:

J — Jmatter -+ Jinteraction
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The effective action in the Keldysh basis reads:

P12 = P12+ 12

Short distance Long distance
+ 3 i 2 2 2
Set (z,) 3/ 2(6®) (z anl—l 0y -+ 0i,, o4 — 6@ (PT — D3)) +...)
Dissipated power
Tail effects

I_=5L—-1 1

Ot = 5(9@1 +@2), Y =1 — P2



Dissipation: Direct calculation in the action without taking imaginary
parts. Here propagators are retarded in the (+-) basis.

The radiated scalar is given by:

Z oy /dt Gret (T ng, ... ninc{ﬂg’ﬁ;”'i“

This can be used to calculate the dissipated action:

1 1 1 L .
+ 4 (3) E : i1. _ = nri1...tn Qn+1 7i1...7n
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4w <~ nl(2n + 1)!!



Tail effects:

Memory effects breaking the Markovian property in the interactions: depends on the past!

1 It

FIG. 4: The diagram associated to the scalar tail effect. There are two radiation fields (wiggly

line) coupled to the I} source and two conservative fields (dotted lines).
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The Feynman integrals give tail terms when logarithms of the energy appear in the integrals... They
show up as the integrals are given by Hankel function of zeroth order... The end result is this:
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Interaction between multipoles Same mon-local kernel as in General
Relativity between quadrupoles.

Dominated by monopole-monopole interactions.

F(mg,my.p) = [ dyly — Za[>=2'2(y(1 — y))”



Force depending in the past

Radiation-reaction

Q
|

X
S|

This leads to a change of the periastron:

/\/62(1 . 62)3/2 .
— B(—1/2.—-1/2 A Fourier modes of monopole
Aw 2(2m)? (—1/2,-1/2)C(e)Awcr

gt = e(Jin_nny ((n = n')e) — Jpunn ((n+n')e))
" n>0,n'>0

1 .
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Observable effect if large coupling to matter and large Newtonian potential.....



Summary

Scalar effects can test the existence of interactions to matter and self-interactions:

Kicks and memory for hyperbolic orbits (white dwarfs?)

Heavily dependent on the coupling to matter

B =0 for black holes... (no hair) unless time-dependence effects

B of order unity for scalarised model?

Heavily dependent on self-coupling A

A<

1

~ B2GNME

Bullet cluster (dark matter):

A< 10%%)2, m <10~ PeV

Vi
Dark energy: A~ —2 ~ 107120
Mp)



Typically one expects that the conformal and disformal interactions are small corrections to the Bm

Newtonian (or GR) case. Our treatment is only for small Newtonian potentials, i.e. way outside % _47rmpl7~
the Schwarzschild radius, and moreover we must require:
Cb <mp — r > 26GNm Always satisfied (Cassini bound)

The disformal interaction will not exceed the conformal interaction provided:

If we want to use a perturbative treatment of the scalar interaction down to a few hundred km’s from objects
of around 1 solar mass like neutron stars in orbits and a Yukawa coupling at the Cassini bound:

re <10%r, = A>10"1" eV

Could be much lower for small Yukawa
couplings.



