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Resurgence: going beyon perturbation theory 
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Divergent series are ubiquitous in physics 

QFT 

• Exact WKB 

• Integrable field 
theories

Topological 
String 

• Topological String/Spectral 
Theory (TS/ST) 
correspondence for toric 
Calabi-Yau (CY) 3-folds 

• Holomorphic anomaly 
equation (HAE)

2D (Super) 
Gravity and JT 

Gravity 

• Painlevé I and II 

• Topological 
Recursion

Complex 
Chern-Simons 

• Quantum invariants of 
knots and 3-manifolds 

• Dimofte-Garoufalidis 
perturbative invariants 
of hyperbolic knots

• M. Serone, Resurgence in integrable field theories

• M. Mariño, Les Houches lectures on non-perturbative topological strings

• I. Aniceto, G. Basar, and R. Schiappa,  A Primer on Resurgent Transseries and Their Asymptotics
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• Resurgence and renormalons in the one-dimensional Hubbard model 

• Resurgence and renormalons in integrable sigma models 

• On the Structure of Trans-Series in Quantum Field Theory  

• Resurgent structure of Topological String on toric Calabi-Yau threefolds 

• Resurgent structure of the Refined Topological String on non-compact threefolds 

• Resurgent structure of Topological String on compact Calabi-Yau threefolds 

• Resurgent structure of complex Chern-Simons on the complement of hyperbolic knots 

• Resurgent structure of complex Chern-Simons on Siefert fibered spheres  

• Resurgence in 2D Quantum Gravity and 2D Quantum Super Gravity (SUGRA) 

• Resurgence in JT Gravity  (in progress)

Recent Applications

Gu, Mariño, Grassi, Pioline, Alexandrov, 
Kashani—Poor, Klemm, Aniceto, Alim, Saha, 

Teschner, Tulli, Rella, VF, …

Mariño, Serone, Schwick, Miravitllas, Reis, 
Sberveglieri, Di Pietro, …

Garoufalidis, Mariño, Gu, Wheeler, 
Andersen, Mistergard, Sauzin, VF, …

Schiappa, Eynard, Iwaki, Mariño, Schwick, 
Bridgeland, … 
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The Borel transform  

Definition: The Borel transform is a formal map   

 

and then extend by countable linearity. Furthermore, one defines  and  is the convolution unit 

The Borel transform is the formal inverse of the Laplace transform 

 

In particular, we can deduce that for some   

ℬ : ℂ[[ℏ]] → ℂδ + ℂ[[ζ]]

ℬ[ℏk] :=
ζk−1

Γ(k + 1)
, k ∈ ℚ∖{0, − 1, − 2,…}

ℬ[1] := δ δ

ℒ[ζk−1] := ∫
∞

0
e−ζ/ℏ ζk−1dζ = Γ(k + 1) ℏk

ω ∈ ℂ

ℬ[ℏke− ω
ℏ ] =

ζk−1
ω

Γ(k + 1)
, k ∈ ℚ∖{0, − 1, − 2,…} , ζω = ζ − ω
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Gevrey series 

Definition: A formal series  is Gevrey-1 if its coefficients  grow as 

 

A series  is Gevrey-1 if and only if its Borel transform  has a finite radius of convergence 

Φ̃(ℏ) =
∞

∑
n=0

anℏn ∈ ℂ[[ℏ]] an

|an | ≤ CAnn! , C, A > 0

Φ̃ ∈ ℂ[[ℏ]] ϕ̃ := ℬΦ̃ ∈ ℂ{ζ}

-planeζ
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Resurgent series 

Definition [Écalle]: A Gevrey-1 series  is resurgent if its Borel transform  has endless analytic 
continuation 

For every , there exists a discrete subset  such that  can be analytically continued along every path of 

length less than , which avoids  starting from the same point  

The set of singularities is  

Φ̃(ℏ) ∈ ℂ[[ℏ]] ϕ̃(ζ) ∈ ℂ{ζ}

L > 0 ΩL ⊂ ℂ ϕ̃(ζ)
L ΩL ζ0

Ω = ⋃
L

ΩL
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Resurgent series 

Definition [Écalle]: A Gevrey-1 series  is resurgent if its Borel transform  has endless analytic 
continuation 

For every , there exists a discrete subset  such that  can be analytically continued along every path of 

length less than , which avoids  starting from the same point  

The set of singularities is  

New information hidden at the singularities

Φ̃(ℏ) ∈ ℂ[[ℏ]] ϕ̃(ζ) ∈ ℂ{ζ}

L > 0 ΩL ⊂ ℂ ϕ̃(ζ)
L ΩL ζ0

Ω = ⋃
L

ΩL
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Φ̃(ℏ) =
∞

∑
n=0

n!ℏn+1

ϕ̃(ζ) =
∞

∑
n=0

n!
ζn

n!

ℬ

Example: the Euler series
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Φ̃(ℏ) =
∞

∑
n=0

n!ℏn+1

ϕ̃(ζ) =
∞

∑
n=0

ζn ∈ ℂ{ζ}

ℬ

Example: the Euler series
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Φ̃(ℏ) =
∞

∑
n=0

n!ℏn+1

ϕ̃(ζ) =
∞

∑
n=0

ζn ∈ ℂ{ζ} ̂ϕ(ζ) =
1

1 − ζ

ℬ

simple pole at ζ = 1

sum

Example: the Euler series
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Φ̃(ℏ) =
∞

∑
n=0

an n!ℏn+1

ϕ̃(ζ) =
∞

∑
n=0

an n!
ζn

n!

ℬ

an = {1 n = 2k

0

(Counter)Example: Gevrey-1 but not resurgent
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Φ̃(ℏ) =
∞

∑
n=0

an n!ℏn+1

ϕ̃(ζ) =
∞

∑
n=0

an ζn

ℬ

an = {1 n = 2k

0



(Counter)Example: Gevrey-1 but not resurgent
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Φ̃(ℏ) =
∞

∑
n=0

an n!ℏn+1

ϕ̃(ζ) =
∞

∑
n=0

an ζn

ℬ

an = {1 n = 2k

0

 is a singular point for every 

 

  can’t be analytically continued 

ζℓ
k = e

2πiℓ
2k

ℓ ∈ ℤ, k ∈ ℤ>0

⇒ ϕ̃



The Airy function is a solution of a linear 2nd order differential equation  

Example: the Airy function 
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Ai(ℏ) = ∫𝒞1

e− 4t3 − 3t
ℏ dt ∼ℏ→0 Φ̃1(ℏ) = e−1/ℏ ℏ1/2

∞

∑
k=0

( 1
6 )k( 5

6 )k

2kk!
(−ℏ)k , (a)k =

Γ(a + k)
Γ(a)

𝒞1



Example: the Airy function 
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Φ̃1(ℏ) = e−1/ℏ ℏ1/2
∞

∑
k=0

( 1
6 )k( 5

6 )k

2kk!
(−ℏ)k

ϕ̃1(ζ) =
∞

∑
k=0

(−1)k ( 1
6 )k( 5

6 )k

2kk!
ζk− 1

2
1

Γ(k + 1
2 )

̂ϕ1(ζ) = ζ−1/2
1 2F1( 1

6
,

5
6

;
1
2

; −
ζ1

2 )

ℬ

Logarithmic singularity at ζ = − 1

sum



Taking the analytic continuation at the singular point  

where  defines the analytic continuation of a different germ 

ζ = − 1

̂ϕ2 ϕ̃2(ζ) ∈ ℂ{ζ}

Example: the Airy function 
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̂ϕ1(ζ + 𝗂ϵ) − ̂ϕ1(ζ − 𝗂ϵ) = S1 ζ−1/2
−1 2F1( 1

6
,

5
6

;
1
2

;
ζ−1

2 )

S1 ∈ ℂ ζ−1/2
−1 2F1( 1

6
,

5
6

;
1
2

;
ζ−1

2 ) = ̂ϕ2(ζ)



Taking the analytic continuation at the singular point  

where  defines the analytic continuation of a different germ  

Taking the analytic continuation of  at the singular point , we recover the function  up to a constant  

The new germ is the Borel transform of an independent solution of the differential equation 

ζ = − 1

̂ϕ2 ϕ̃2(ζ) ∈ ℂ{ζ}

̂ϕ2 ζ = 1 ̂ϕ1 S2

ϕ̃2(ζ) = ℬΦ̃2

Example: the Airy function 
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̂ϕ1(ζ + 𝗂ϵ) − ̂ϕ1(ζ − 𝗂ϵ) = S1 ζ−1/2
−1 2F1( 1

6
,

5
6

;
1
2

;
ζ−1
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S1 ∈ ℂ ζ−1/2
−1 2F1( 1

6
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5
6
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1
2
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2 ) = ̂ϕ2(ζ)
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Resurgent structure

Let  be a Gevrey-1 resurgent series. The resurgent structure of  consists of the following data:   

1.  the singularities of the Borel transform  in the Borel plane 

2.   the Stokes constants associated with each  

3.  new germs of analytic functions, which resurges at each  

Φ̃ ∈ ℂ[[ℏ]] Φ̃

ω ∈ Ω ⊂ ℂ ̂ϕ(ζ) ∈ ℂ{ζ}

Sω ∈ ℂ ω ∈ Ω

ϕ̃ω(ζ) ∈ ℂ{ζ} ω ∈ Ω
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Resurgent structure

Let  be a Gevrey-1 resurgent series. The resurgent structure of  consists of the following data:   

1.  the singularities of the Borel transform  in the Borel plane 

2.   the Stokes constants associated with each  

3.  new germs of analytic functions, which resurges at each  

New series resurge at the singularities  

 

Φ̃ ∈ ℂ[[ℏ]] Φ̃

ω ∈ Ω ⊂ ℂ ̂ϕ(ζ) ∈ ℂ{ζ}

Sω ∈ ℂ ω ∈ Ω

ϕ̃ω(ζ) ∈ ℂ{ζ} ω ∈ Ω

̂ϕ(ζ) = −
Sω

2πi
log(ζ − ω)ϕ̃ω(ζ − ω) +  reg.   for ζ near ω

̂ϕ(ζ) = −
1

2π𝗂
Sω

ζ − ω
+  reg.   for ζ near ω
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Trans-series: the building blocks of non-perturbative corrections

From a simple reusrgent series to exponentially sub-leading order corrections  

Trans-series are the building blocks of non-perturbative corrections, defined by a sequence of sub-leading order corrections 

 

where  is a free parameter 

The Stokes automorphisms act as automorphisms on the space of trans-series, and compute the Stokes constants 

Solutions of non-linear ODEs are usually trans-series [Baldino-Schiappa-Schwick-Vega, Mariño-Miravitllas, Delabaere]

Z(ℏ; σ) = ∑
k≥0

σk e−k ω /ℏ Φ̃ω(ℏ)

σ ∈ ℂ

        Φ̃ ∈ ℂ[[ℏ]] ⇝ e−ω/ℏ Sω Φ̃ω(ℏ) ∈ e−ω/ℏℂ[[ℏ]]
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Resurgence in practice

When it comes to doing explicit computations, we usually face the following situations: 

 If the perturbative coefficients are known in closed form, then one can use the Hadamard product 

 If many ( ) perturbative coefficients are available with high precision, then one can use Borel-Padé or 
hyperasymptotics [Berry-Howls] 

                  

where  

Plotting the zeros of  we see how singularities in the -plane distribute 

N ≥ 100

P̃(ℏ) =
N

∑
n=1

an ℏn p̃(ζ) =
N

∑
n=1

an

n!
ζn ̂p(ζ) =

q1(ζ)
q2(ζ)

,

q1 , q2 ∈ ℂ[ζ]

q2(ζ) ζ

ℬ Padé

Gu-Mariño, ArXiv: 2211.01403



Summation methods associate to a divergent series  an analytic function   

                                     analytic  

From formal to analytic 

Φ̃ Φ̂

Φ̃(ℏ) ∈ ℂ[[ℏ]] Φ̂

28

???

 Summability 



1. The formal Borel transform  

                                     analytic  

                                            analytic  

ℬ

Φ̃(ℏ) ∈ ℂ[[ℏ]] ϑΦ̂ (ℏ)

ϕ̃(ζ) ∈ ℂ{ζ} ̂ϕ(ζ)

Borel-Laplace summation

29

ℬ ℒϑ

sum

Borel-Laplace summation works in three steps

-planeζ



2. Analytic continuation in the -plane   

                                     analytic  

                                            analytic  

ζ

Φ̃(ℏ) ∈ ℂ[[ℏ]] ϑΦ̂ (ℏ)

ϕ̃(ζ) ∈ ℂ{ζ} ̂ϕ(ζ)

Borel-Laplace summation

30

ℬ

sum

Borel-Laplace summation works in three steps

-planeζ



3. The Laplace transform  is defined along a ray in the direction  that avoids the singularities 

                                     analytic  

                                            analytic  

ℒϑ ϑ

Φ̃(ℏ) ∈ ℂ[[ℏ]] Φ̂ϑ (ℏ)

ϕ̃(ζ) ∈ ℂ{ζ} ̂ϕ(ζ)

Borel-Laplace summation

31

ℬ ℒϑ

sum

Borel-Laplace sum

Borel-Laplace summation works in three steps

Hϑ

-planeℏ

-planeζ

ϑ



3. The Borel-Laplace sum  is uniform (Gevrey) asymptotic to  

                                     analytic  

                                            analytic  

Divergence is due to exponentially suppressed terms

Φ̂ Φ̃

Φ̃(ℏ) ∈ ℂ[[ℏ]] Φ̂ϑ (ℏ)

ϕ̃(ζ) ∈ ℂ{ζ} ̂ϕ(ζ)

Borel-Laplace summation

32

ℬ ℒϑ

sum

Borel-Laplace sum

Borel-Laplace summation works in three steps

Hϑ

asymptotics

-planeℏ

-planeζ



The exponentially small terms can be reconstructed from the divergent series 

What is the effect of the singularities?

33

Hϑ

H−ϑ
-planeζ



The exponentially small terms can be reconstructed from the divergent series 

 

Varying the direction of the Borel-Laplce summation, the sum  jumps giving exponentially small corrections 

[ℒϑ − ℒ−ϑ] 1
1 − ζ

= ∫𝒞1

e−ζ/ℏ 1
1 − ζ

dζ = −2πi e−1/ℏ

Φ̂

What is the effect of the singularities?

34

Hϑ

H−ϑ
-planeζ



The exponentially small terms can be reconstructed from the divergent series 

 

The resurgence analysis of the Borel transforms already computed these contributions! 

[ℒϑ − ℒ−ϑ] 1
1 − ζ

= ∫𝒞1

e−ζ/ℏ 1
1 − ζ

dζ = −2πi
⏟

e−1/ℏ
⏟

What is the effect of the singularities?

35

Hϑ

H−ϑ
-planeζ

Residue Singularity
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   topological invariants [Jones, Kashaev] 

           

 is the Chern-Simons functional, and  is the moduli space of flat  connections on  [Witten] 

When  the integral is expected to localise at  flat connections

K ⇝

∫ℳ
e

CS(A)
ℏ dA

CS(A) ℳ 𝖲𝖴(2) S3∖K

ℏ ∈ ℂ 𝖲𝖫2(ℂ)

Topological invariants of hyperbolic knots

37



   topological invariants [Jones, Kashaev] K ⇝

∫ℳ
e

CS(A)
ℏ dA

The volume conjecture

38

Volume conjecture [Kashaev] 
2π log |⟨K⟩N |

N
∼N→∞ vol(S3∖K)



   topological invariants [Jones, Kashaev] 

           

 is the Chern-Simons functional, and  is the moduli space of flat  connections on  [Witten] 

When  the integral is expected to localise at  flat connections

K ⇝

∫ℳ
e

CS(A)
ℏ dA

CS(A) ℳ 𝖲𝖴(2) S3∖K

ℏ ∈ ℂ 𝖲𝖫2(ℂ)

Complex Chern-Simon theory on the complement of an hyperbolic knots

39

“Find an intrinsically three-dimensional definition of the 
Jones polynomial of knot theory”  

[Atiyah]

 Chern-Simons on  
[Witten]

𝖲𝖴(2) S3∖K



   topological invariants [Jones, Kashaev] 

           

Analytic continuation of Chern-Simons theory is divergent, and it is expected to localise at  flat connections [Witten]

K ⇝

∫ℳ
e

CS(A)
ℏ dA

𝖲𝖫2(ℂ)

Complex Chern-Simon theory on the complement of an hyperbolic knots

40

“Find an intrinsically three-dimensional definition of the 
Jones polynomial of knot theory”  

[Atiyah]

 Chern-Simons on  
[Witten]

𝖲𝖴(2) S3∖K



Perturbative vs non-perturbative topological invariants of hyperbolic knots

41

Dimofte-Garoufalidis perturbative invariants [Dimofte-
Garoufalidis, Garoufalidis-Strozer-Wheeler] 

 

which represents the all orders asymptotics of Kashaev’s 
invariant, with leading order given by the volume, and it 
should represent  Chern-Simons on  

Υ̃(τ)

SL2(ℂ) S3∖K

Andersen-Kashaev state integrals and descendants 
[Andersen-Kashaev] [ciaociaociaociao] 

 

which defines the partition function of a 3D Teichmüller TQFT

I0,0(τ)

Andersen-Kashaev volume conjecture                                                    Υ̃ I0,0
Asymptotics 



Perturbative vs non-perturbative topological invariants of hyperbolic knots

42

Dimofte-Garoufalidis perturbative invarianats [Dimofte-
Garoufalidis, Garoufalidis-Strozer-Wheeler] 

 Υ̃(τ) := ∫ Ψ̃(z, τ)B e( −
A
2

z2τ) dz

Andersen-Kashaev state integrals and descendants 
[Andersen-Kashaev] [ciaociaociaociao] 

 

where  et  

 is the AK state integral

Im,ℓ(τ) := ∫𝒥ℓ,τ

Φ((z − ℓ)τ; τ)B e( A
2

z(zτ + τ + 1) + mzτ)dz ,

m = 0,…, A − 1 ℓ ∈ ℤ

I0,0(τ)

Borel-Laplace sum
                                                    Ψ̃ Φ

Asymptotics 

Faddeev’s dilogarithm

Analytic functionDivergent series

41 : (A = 1,B = 2) 52 : (A = 2,B = 3)

[Kashaev-Garoufalidis]
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Dimofte-Garoufalidis perturbative invarianats [Dimofte-
Garoufalidis, Garoufalidis-Strozer-Wheeler] 

 Υ̃(τ) := ∫ Ψ̃(z, τ)B e( −
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z2τ) dz

Borel-Laplace sum
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Asymptotics 
Analytic functionDivergent series

Borel-Laplace sum
                                                    Υ̃ I0,0

Asymptotics 
?
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Dimofte-Garoufalidis perturbative invarianats [Dimofte-
Garoufalidis, Garoufalidis-Strozer-Wheeler] 

 Υ̃(τ) := ∫ Ψ̃(z, τ)B e( −
A
2

z2τ) dz

Borel-Laplace sum
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Asymptotics 
Analytic functionDivergent series

41 : (A = 1,B = 2) 52 : (A = 2,B = 3)

Conjecture [Garoufalidis-Gu-Mariño] The Borel sum of  is a linear combination of   Υ̃ Im,ℓ

Andersen-Kashaev state integrals and descendants 
[Andersen-Kashaev] [ciaociaociaociao] 
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 is the AK state integral

Im,ℓ(τ) := ∫𝒥ℓ,τ
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2
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Dimofte-Garoufalidis perturbative invarianats [Dimofte-
Garoufalidis, Garoufalidis-Strozer-Wheeler] 

 Υ̃(τ) := ∫ Ψ̃(z, τ)B e( −
A
2

z2τ) dz

Borel-Laplace sum
                                                    Ψ̃ Φ

Asymptotics 
Analytic functionDivergent series

41 : (A = 1,B = 2) 52 : (A = 2,B = 3)

Theorem [VF-Wheeler] The Borel sum of  is a linear combination of   for the  and  knots Υ̃ Im,ℓ 41 52

Andersen-Kashaev state integrals and descendants 
[Andersen-Kashaev] [ciaociaociaociao] 

 

where  et  

 is the AK state integral

Im,ℓ(τ) := ∫𝒥ℓ,τ

Φ((z − ℓ)τ; τ)B e( A
2

z(zτ + τ + 1) + mzτ)dz ,

m = 0,…, A − 1 ℓ ∈ ℤ

I0,0(τ)

Faddeev’s dilogarithm



Resurgence of the DG perturbative invariants 

47

The singularities in the Borel plane are organized in a peacock pattern, and they are located at the critical values of the 
Chern-Simons functional [Garoufalidis-Gu-Mariño] 

The Stokes constants can be computed by solving a q-difference equation [Garoufalidis-Gu-Mariño]  

Conjecture [Garoufalidis-Gu-Mariño] The Stokes constants have an interpretation in terms of the 3D index [Dimofte-Gaiotto-Gukov]

41 52

-planeζ -planeζ



Resummation

48

The Borel-Laplace sum  of the DG invariants  is given by a thimble integral, whose integration contour can be described 
algorithmically and represented by the integration contour of the state integrals   

Υ̂ϑ Υ̃
Im,ℓ

41

Υ̂ϑ = I0,0 + q2I2,−1 = I0,0 + I1,0



Resummation

49

The Borel-Laplace sum  of the DG invariants  is given by a thimble integral, whose integration contour can be described 
algorithmically and represented by the integration contour of the state integrals    

                                                                                                      

                                                                                                      Saddle connection, the resummation is not defined!

Υ̂ϑ Υ̃
Im,ℓ

41



Resummation
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The Borel-Laplace sum  of the DG invariants  is given by a thimble integral, whose integration contour can be described 
algorithmically and represented by the integration contour of the state integrals   

Υ̂ϑ Υ̃
Im,ℓ

41

Υ̂ϑ = −I0,0 + I0,−1 = − I0,0 − I−1,0
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The Borel-Laplace sum  of the DG invariants  is given by a thimble integral, whose integration contour can be described 
algorithmically and represented by the integration contour of the state integrals   

Υ̂ϑ Υ̃
Im,ℓ

41

                                                             Υ̂ϑ = −I0,0 + I0,−1 − q4I2,−2+2q2I1,−1 + 2q2I1,−1−4qI0,0
= − I0,0 − I−1,0 − 9qI0,0



Resummation
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The Borel-Laplace sum  of the DG invariants  is given by a thimble integral, whose integration contour can be described 
algorithmically and represented by the integration contour of the state integrals   

Υ̂ϑ Υ̃
Im,ℓ

41

                                                             Υ̂ϑ = −I0,0 + I0,−1 − q4I2,−2+2q2I1,−1 + 2q2I1,−1−4qI0,0
= − I0,0 − I−1,0 − 9qI0,0



Computing the Stokes constants
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The Stokes constants are computed by comparing two different Borel-Laplace sums along directions separated by the ray 
that contains the singularity 

I0,0 + I1,0 − (−I0,0 − I−1,0) = 3I0,0 ⇒ S = 3q

41 41 41

Υ̂ϑ = I0,0 + q2I2,−1 = I0,0 + I1,0
Υ̂ϑ = −I0,0 + I0,−1 = − I0,0 − I−1,0
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In progress with Andersen, Kontsevich and Wheeler
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Generalization of our result to higher-dimensional integrals, and for a more general class of integrals  

    

with  and  possibly multi-valued  

Proof of the 3D index conjecture: the 3D index is computed by the Picard-Lefschetz formula on a suitable homology theory 

∫ g(x, ℏ) dx

g(x; ℏ) ∼ℏ→0 e−f(x)/ℏ ∑
k≥0

ϕk(x) ℏk f : X → ℂ



56

Can resurgence fail?

Resurgence computes non-perturbative corrections  

Despite being a powerful computational tool, effective in various contexts, resurgence has some limits   

• Not enough perturbative coefficients limit the numerical computation  

• Some non-perturbative sectors can be missed  

✦Trivial flat connection is not seen from the geometric ones [Garoufalidis-Gu-Mariño-Wheeler] 

✦More examples from QFT 



Thank you for your attention


